A study of monodromy in the computation of multidimensional persistence

Andrea Cerri1,4, Marc Ethier2 and Patrizio Frosini3,4

1 IMATI-CNR, Genova, Italia
2 Département de mathématiques, Université de Sherbrooke
Sherbrooke (Québec) Canada
3 Dipartimento di Matematica, Università di Bologna, Italia
4 ARCES, Università di Bologna, Italia

DGCI 2013
March 22, 2013
Table of Contents

1. Persistence

2. Properties of the admissible pair space

3. Monodromy
Let X be a topological space and $\varphi : X \rightarrow \mathbb{R}$ a continuous function. The subsets $X_u = \{ x \in X \mid \varphi(x) \leq u \}$ form a filtration. The inclusion $j^{(u,v)} : X_u \hookrightarrow X_v$ where

$$(u, v) \in \Delta^+ = \{ (u, v) \in \mathbb{R} \times \mathbb{R} \mid u < v \}$$

induces for each q an homomorphism $H_q(j^{(u,v)})$ between the homology modules $H_q(X_u)$ and $H_q(X_v)$.
Persistent homology

Let X be a topological space and $\varphi : X \to \mathbb{R}$ a continuous function. The subsets $X_u = \{ x \in X \mid \varphi(x) \leq u \}$ form a filtration. The inclusion $j^{(u,v)} : X_u \hookrightarrow X_v$ where

$$(u, v) \in \Delta^+ = \{(u, v) \in \mathbb{R} \times \mathbb{R} \mid u < v\}$$

induces for each q an homomorphism $H_q(j^{(u,v)})$ between the homology modules $H_q(X_u)$ and $H_q(X_v)$.

We define homology on a field \mathbb{F} in order for the persistent Betti numbers $\beta_\varphi,q(u, v) = \dim \text{im} H_q(j^{(u,v)})$ to entirely encapsulate persistence. β_φ is further represented by its persistence diagram $\text{Dgm}(\varphi)$.
Persistence diagrams

The persistence diagram $Dgm(\varphi)$ is the multiset of its proper cornerpoints and cornerpoints at infinity repeated a number of times corresponding to their multiplicity, with the diagonal $\Delta = \{(u, v) \in \mathbb{R} \times \mathbb{R} \mid u = v\}$ taken with infinite multiplicity.
Persistence diagrams

The persistence diagram $D_{gm}(\varphi)$ is the multiset of its proper cornerpoints and cornerpoints at infinity repeated a number of times corresponding to their multiplicity, with the diagonal $\Delta = \{(u, v) \in \mathbb{R} \times \mathbb{R} \mid u = v\}$ taken with infinite multiplicity.
Persistence diagrams

The persistence diagram $\text{Dgm}(\varphi)$ is the multiset of its proper cornerpoints and cornerpoints at infinity repeated a number of times corresponding to their multiplicity, with the diagonal $\Delta = \{(u, v) \in \mathbb{R} \times \mathbb{R} \mid u = v\}$ taken with infinite multiplicity.
Persistence diagrams

The persistence diagram $\text{Dgm}(\varphi)$ is the multiset of its proper cornerpoints and cornerpoints at infinity repeated a number of times corresponding to their multiplicity, with the diagonal $\Delta = \{(u, v) \in \mathbb{R} \times \mathbb{R} \mid u = v\}$ taken with infinite multiplicity.
Persistence diagrams

The persistence diagram $\text{Dgm}(\varphi)$ is the *multiset* of its proper cornerpoints and cornerpoints at infinity repeated a number of times corresponding to their multiplicity, with the diagonal $\Delta = \{(u, v) \in \mathbb{R} \times \mathbb{R} \mid u = v\}$ taken with infinite multiplicity.
The persistence diagram $Dgm(\varphi)$ is the multiset of its proper cornerpoints and cornerpoints at infinity repeated a number of times corresponding to their multiplicity, with the diagonal $\Delta = \{(u, v) \in \mathbb{R} \times \mathbb{R} \mid u = v\}$ taken with infinite multiplicity.
Persistence diagrams

The persistence diagram $\text{Dgm}(\varphi)$ is the multiset of its proper cornerpoints and cornerpoints at infinity repeated a number of times corresponding to their multiplicity, with the diagonal $\Delta = \{(u, v) \in \mathbb{R} \times \mathbb{R} \mid u = v\}$ taken with infinite multiplicity.
Multidimensional persistence

For $\varphi : X \to \mathbb{R}^n$, we can consider the *multifiltration* formed by the subsets $X_u = \{ x \in X \mid \varphi(x) \preceq u \}$, where \preceq is the partial order on \mathbb{R}^n. We similarly obtain multidimensional persistent Betti numbers $\beta_{\varphi,q}(u, v)$.

Multidimensional persistence

For $\varphi : X \to \mathbb{R}^n$, we can consider the *multifiltration* formed by the subsets $X_u = \{x \in X \mid \varphi(x) \preceq u\}$, where \preceq is the partial order on \mathbb{R}^n. We similarly obtain multidimensional persistent Betti numbers $\beta_{\varphi, q}(u, v)$. Why use multidimensional persistence?
Multidimensional persistence

For \(\varphi: X \to \mathbb{R}^n \), we can consider the multifiltration formed by the subsets \(X_u = \{ x \in X \mid \varphi(x) \preceq u \} \), where \(\preceq \) is the partial order on \(\mathbb{R}^n \). We similarly obtain multidimensional persistent Betti numbers \(\beta_{\varphi,q}(u, v) \).

Why use multidimensional persistence?
It can be used to distinguish and compare noisy images, objects sampled by point clouds, and fuzzy sets.
Image retrieval tolerant to domain perturbation

Let X be a topological space, $K, K' \subset X$, and $\varphi : K \to \mathbb{R}^n$, $\varphi' : K' \to \mathbb{R}^n$ continuous filtering functions. If they represent point clouds or images subjected to noise, K and K' may differ in topology, making their comparison by means of persistent homology more problematic.
Let X be a topological space, $K, K' \subset X$, and $\varphi : K \to \mathbb{R}^n$, $\varphi' : K' \to \mathbb{R}^n$ continuous filtering functions. If they represent point clouds or images subjected to noise, K and K' may differ in topology, making their comparison by means of persistent homology more problematic. However, extending φ, φ' so that they take all X as their domain, and substituting the sets K, K' with appropriate functions $f_K, f_{K'} : X \to \mathbb{R}$ so that perturbations of the sets become perturbations of these functions, we can then use persistence to compare the functions $\Phi = (f_K, \varphi) : X \to \mathbb{R}^{n+1}$ and $\Phi' = (f_{K'}, \varphi') : X \to \mathbb{R}^{n+1}$.
Examples of perturbed domains

Four binary images of an octopus. Last three correspond to the first one subjected to different kinds of noise.
Choice of set distance function

The choice of f_K depends on what deformation is expected. For small perturbations, sets are comparable using the Hausdorff distance, and we take as f_K the distance from K (in any norm). In presence of outlying points, sets can be compared using the symmetric difference pseudometric, in which case f_K is taken as χ_K convolved with a ball.
Choice of set distance function

The choice of f_K depends on what deformation is expected. For small perturbations, sets are comparable using the Hausdorff distance, and we take as f_K the distance from K (in any norm). In presence of outlying points, sets can be compared using the symmetric difference pseudometric, in which case f_K is taken as χ_K convolved with a ball.

See *Persistent Betti numbers for a noise tolerant shape-based approach to image retrieval*, P. Frosini and C. Landi (2012) for details.
Choice of set distance function

The choice of f_K depends on what deformation is expected. For small perturbations, sets are comparable using the Hausdorff distance, and we take as f_K the distance from K (in any norm). In presence of outlying points, sets can be compared using the symmetric difference pseudometric, in which case f_K is taken as χ_K convolved with a ball. See *Persistent Betti numbers for a noise tolerant shape-based approach to image retrieval*, P. Frosini and C. Landi (2012) for details. This method requires the use of multidimensional persistence.
Computation of multidimensional persistence

Computing the multidimensional persistence diagram for a function \(\varphi : X \to \mathbb{R}^n \) reduces to the computation of one-dimensional persistence diagrams for a parametrized family of functions \(\varphi(\vec{m}, \vec{b}) : X \to \mathbb{R} \) defined as

\[
\varphi(\vec{m}, \vec{b})(x) = \min_i m_i \cdot \max_i \left\{ \frac{\varphi_i(x) - b_i}{m_i} \right\},
\]

where \((\vec{m}, \vec{b})\) varies in the space

\[
\text{Adm}_n = \left\{ (\vec{m}, \vec{b}) \in \mathbb{R}^n \times \mathbb{R}^n \mid \forall i \; m_i > 0, \sum_i m_i = 1, \sum_i b_i = 0 \right\}.
\]
Computation of multidimensional persistence

Computing the multidimensional persistence diagram for a function $\varphi : X \to \mathbb{R}^n$ reduces to the computation of one-dimensional persistence diagrams for a parametrized family of functions $\varphi(\vec{m}, \vec{b}) : X \to \mathbb{R}$ defined as

$$\varphi(\vec{m}, \vec{b})(x) = \min_i m_i \cdot \max_i \left\{ \frac{\varphi_i(x) - b_i}{m_i} \right\},$$

where (\vec{m}, \vec{b}) varies in the space

$$\text{Adm}_n = \left\{ (\vec{m}, \vec{b}) \in \mathbb{R}^n \times \mathbb{R}^n \mid \forall i \ m_i > 0, \sum_i m_i = 1, \sum_i b_i = 0 \right\}.$$

$(\vec{m}, \vec{b}) \in \text{Adm}_n$ corresponds to a line $r_{(\vec{m}, \vec{b})}$ of \mathbb{R}^n whose distinct points $u = \sigma \vec{m} + \vec{b}, \nu = \tau \vec{m} + \vec{b}, \sigma, \tau \in \mathbb{R}$ are comparable by \prec.
Tracking cornerpoints

Definition

The pair \((\vec{m}, \vec{b})\) \(\in Adm_n\) is said to be singular if at least one proper cornerpoint of \(Dgm(\varphi_{(\vec{m}, \vec{b})})\) has multiplicity strictly greater than 1. Otherwise it is called regular. The set of regular pairs shall be denoted \(Adm^*_n\). Moreover, \(\varphi\) is said to be normal if its set of singular pairs is discrete.

Theorem

Let \(\varphi : X \rightarrow \mathbb{R}^n\) be a normal filtering function and \(I\) be the closed interval \([0, 1]\). For every continuous path \(\gamma : I \rightarrow Adm^*_n(\varphi)\) and every proper cornerpoint \(p \in Dgm(\varphi_{\gamma(0)})\), there exists a continuous function \(c : I \rightarrow \Delta^+ \cup \{\Delta\}\) such that \(c(0) = p\) and \(c(t) \in Dgm(\varphi_{\gamma(t)})\) for all \(t \in I\). Furthermore, if there is no \(t \in I\) such that \(c(t) = \Delta\), \(c\) is the only such continuous function.
We might think that there exists a correspondence between the pair $(\vec{m}, \vec{b}) \in \text{Adm}_n^*(\varphi)$ and each cornerpoint of the diagram $\text{Dgm}(\varphi_{(\vec{m}, \vec{b})})$.
We might think that there exists a correspondence between the pair
$$(\vec{m}, \vec{b}) \in \text{Adm}_n^*(\varphi)$$ and each cornerpoint of the diagram
$\text{Dgm}(\varphi_{(\vec{m}, \vec{b})})$.
However, this is not the case: the correspondence depends on the path followed.
Example (Nontrivial monodromy)

Consider the function \(\varphi : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) defined on the plane in the following way: \(\varphi_1(x, y) = x \), and

\[
\varphi_2(x, y) = \begin{cases}
-x & \text{if } y = 0 \\
-x + 1 & \text{if } y = 1 \\
-2x & \text{if } y = 2 \\
-2x + \frac{5}{4} & \text{if } y = 3
\end{cases}
\]

\(\varphi_2(x, y) \) then being extended linearly for every \(x \) on the segment joining \((x, 0)\) with \((x, 1)\), \((x, 1)\) with \((x, 2)\), and \((x, 2)\) to \((x, 3)\). On the half-lines \(\{(x, y) \in \mathbb{R}^2 \mid y < 0\} \) and \(\{(x, y) \in \mathbb{R}^2 \mid y > 3\} \), \(\varphi_2 \) is then being taken with constant slope \(-1\) in the variable \(y \).
Example

Figure: Function φ_2 of previous example. Depth is x, width is y.
Let $p : \tilde{X} \to X$ a covering map onto the topological space X, and let $x \in X$. In algebraic topology, we refer to as monodromy the phenomenon by which, for a loop $\gamma : I \to X$ where $\gamma(0) = \gamma(1) = x$, and for $\tilde{x} \in p^{-1}(x)$ an element of the fibre of x, the associated continuous path $\tilde{\gamma}$ such that $\tilde{\gamma}(0) = \tilde{x}$ and $p \circ \tilde{\gamma} = \gamma$ might not be such that $\tilde{\gamma}(1) = \tilde{x}$.
Monodromy

Let $p : \tilde{X} \to X$ a covering map onto the topological space X, and let $x \in X$. In algebraic topology, we refer to as *monodromy* the phenomenon by which, for a loop $\gamma : I \to X$ where $\gamma(0) = \gamma(1) = x$, and for $\tilde{x} \in p^{-1}(x)$ an element of the fibre of x, the associated continuous path $\tilde{\gamma}$ such that $\tilde{\gamma}(0) = \tilde{x}$ and $p \circ \tilde{\gamma} = \gamma$ might not be such that $\tilde{\gamma}(1) = \tilde{x}$.

In other words, as we turn around a singularity, it may be necessary to define applications on the cover \tilde{X} of X in order to guarantee their continuity.
Consequences

We are currently studying distances between two-dimensional persistence diagrams that follow families of matchings between their cornerpoints as the latter move continuously in the space \(\Delta^+ \cup \{\Delta\} \) under changes of admissible pair \((\vec{m}, \vec{b})\).
Consequences

We are currently studying distances between two-dimensional persistence diagrams that follow families of matchings between their cornerpoints as the latter move continuously in the space $\Delta^+ \cup \{\Delta\}$ under changes of admissible pair (\vec{m}, \vec{b}). However, because of the monodromy property, the cost of a matching depends not only on the pair (\vec{m}, \vec{b}) at which we find ourselves, but also on the path taken to reach it.
Consequences

We are currently studying distances between two-dimensional persistence diagrams that follow families of matchings between their cornerpoints as the latter move continuously in the space $\Delta^+ \cup \{\Delta\}$ under changes of admissible pair (\vec{m}, \vec{b}). However, because of the monodromy property, the cost of a matching depends not only on the pair (\vec{m}, \vec{b}) at which we find ourselves, but also on the path taken to reach it. We therefore believe that continuous families of matchings should take as parameter not the admissible pair $(\vec{m}, \vec{b}) \in \text{Adm}_2$, but rather an element of the fibre of (\vec{m}, \vec{b}) in a suitable covering space.